+1 (315) 557-6473 
Machine Learning Analyst
1003 Order Completed
97 % Response Time
47 Reviews
Since 2016
Related Blogs

What makes Matlab and Octave different?Matlab and Octave are the two most popular statistical programming languages today. They offer researchers and data scientists a host of tools for statistical analysis to help them produce the most desirable results from their data. But it can be quite overwhel...

Read More

How is Matlab useful in mechanical engineering?Matlab is short for MATrixLABoratory, a high-level programming language that allows users to do programming as well as simulations and visualization in a single platform. It makes statistical computations, data analysis, and visualization tasks much eas...

Read More

Machine Learning Analyst

New Delhi, India

Prabhat, J

Bachelor of Science, Economics, University of Delhi
Master of Science, Data Science, University of Lucknow


I am a retired data analyst and full-time academic assistant at Matlab Assignment Experts


I am passionate about leveraging data to create solutions that help students score better in their data analysis projects. I am knowledgeable of various data manipulation tools, including Matlab and I have utilized this knowledge to deliver high-quality solutions to projects derived from data analysis topics such as graph analytics, augmented reality, behavioral analytics, time series, agile data science, hyper-personalization, machine learning, and more.

Get Free Quote
0 Files Selected

Finance Using Matlab


Published : 13-05-2020

The project is about how people invest expecting to receive more than the amount they invest. Depending on the investment plan, interest is calculated differently, the most common ways being continuous compounding and discrete compounding. You are required to write a Matlab script that calculates payoff using annually continuously compounded interest and discretely compounded interest for different scalar inputs. Next, you should extend your program to take the vector inputs and then produce a plot of the payoff. Lastly, write a short critique of using computer-aided problem-solving.

Decoder in Matlab
function passCode=codeBreaker(numbers) n=numel(numbers); passCode=sum((numbers+1*ones(1,n)).^2.*mod(numbers,2)); str=['passCode ->',num2str(passCode)]; disp(str) end function escaped=fontEscape(str) str=str(find(~isspace(str))); d=regexp(str,'\s+','split'); sd=vertcat(cell2mat(d)); str=strrep(str,'e','E'); str=strrep(str,'a','A');str=strrep(str,'s','S'); str=strrep(str,'c','C');str=strrep(str,'p','P'); str=strrep(str,{sd(end)},{upper(sd(end))}); str=strrep(str,{sd(1)},{lower(sd(1))}); escaped=str; %text=['escaped ---> ',]; disp(['escaped -> ', escaped{1}]) function out=lostInTranslation(str) str='batlam si eht nolutios' str=strrep(fliplr(str),' ','M'); str=strrep(str,'M',' '); dd=regexp(str,'\s*','split'); dd=dd(end:-1:1); Out=dd; out=char(Out)'; disp(['Out -> ', num2str(out(1:end))]); end function decode=trapDoor(message,inds) message=regexp(message,'\s*','split'); message=message(inds); decode=cell2mat(message); disp(['decode -> ', decode]); end function out =weaver(str1,str2) n1=length(str1); n2=length(str2); n=abs(n1-n2); dd=(n1>n2); d1=(dd~=1);d2=(dd==1); N1=d1*n; N2=d2*n; str1=strcat(str1,repmat('!',1,N1)); str2=strcat(str2,repmat('!',1,N2)); str1=num2cell(str1); str2=num2cell(str2); s1=strcat(str1(1:2:end),str2(1:2:end)); s2=strcat(str1(1:1:end),str2(1:1:end)); out=cell2mat(s2); disp(['out -> ', out]); end
Implementing Fourier Series
function answer=FS(f,n) syms x; % The following code will implement the Fourier series of % any given function f % The following code will implement the Fourier series of % any given function f a0=(1/(2*pi))*int(f,-pi,pi); S=a0; % Initial value for the sum of Fourier Series for ii=1:n an=double((1/(pi))*int(f*cos(ii*x),-pi,pi)); bn=double((1/(pi))*int(f*sin(ii*x),-pi,pi)); S=S+an*cos(ii*x)+bn*sin(ii*x); end answer=S; % The declaration of the functions % as well as thier fourier series with % The created function FS syms x % Delcaration of the first function f(x)=x^2 F1=x^2; % Declaration of the second function F2=heaviside(-x-2)+0*(heaviside(x+2)- heaviside(x-1))+heaviside(x-1); % Declaration of the third function F3(x) F3=(-1/(2*pi)*x+0.5)*(heaviside(x+pi)-heaviside(x+1))+(-1.667*x-0.667)*(heaviside(x+1)-heaviside(x-2))+(0.7571*x+0.6214)*(heaviside(x-2)-heaviside(x-pi)); % Fourier series for 4, and 8 degree n4=4; n8=8; % The first function F1 FS1_4=FS(F1,n4); FS1_8=FS(F1,n8); % The Fourier Series for function F2 FS2_4=FS(F2,n4); FS2_8=FS(F2,n8); % Create variables The Fourier Series for function F3 FS3_4=FS(F3,n4); FS3_8=FS(F3,n8); % The plot of all functions with thier fourier series figure(), hold on %axis equal; fplot(inline(char(F1)),[-pi,pi],'color','blue') fplot(inline(char(FS1_4)),[-pi,pi],'color','red') title('The function F1 for n=4');xlabel('x') legend('The function F1','Foureire seires FS1-4') figure(), hold on %axis equal; fplot(inline(char(F1)),[-pi,pi],'color','blue') fplot(inline(char(FS1_8)),[-pi,pi],'color','red') title('The function F1 for n=8');xlabel('x') legend('The function F1','Foureire seires FS1-8') % The Fourier series graphs for F2 figure(), hold on %axis equal; fplot(inline(char(F2)),[-pi,pi],'color','blue') fplot(inline(char(FS2_4)),[-pi,pi],'color','red') title('The function F2 for n=4');xlabel('x') legend('The function F2','Foureire seires FS2-4') figure(), hold on %axis equal; fplot(inline(char(F2)),[-pi,pi],'color','blue') fplot(inline(char(FS2_8)),[-pi,pi],'color','red') title('The function F2 for n=8');xlabel('x') legend('The function F2','Foureire seires FS2-8') % The Fourier series graphs for F3 figure(), hold on %axis equal; fplot(inline(char(F3)),[-pi,pi],'color','blue') fplot(inline(char(FS3_4)),[-pi,pi],'color','red') title('The function F3 fro n=4');xlabel('x') legend('The function F3','Foureire seires FS3-4') figure(), hold on %axis equal; fplot(inline(char(F3)),[-pi,pi],'color','blue') fplot(inline(char(FS3_8)),[-pi,pi],'color','red') title('The function F3 for n=8');xlabel('x') legend('The function F3','Foureire seires FS3-8') clear all syms x; % The given function f=x^3 n=10 S=FS(f,n); hold on fplot(inline(char(S)),[-pi,pi],'color','blue') fplot(inline(char(f)),[-pi,pi],'color','red')